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As a practicing structural engineer and as an educator, I have always believed that structural
engineers and architects should have knowledge of the design of the various types of structures
and of their components, various analysis and design methods, the technologies used in this
analysis, and the design and production of engineering drawings. The Structural Engineering
Handbook provides established engineers, young engineers preparing for license exams, archi-
tects, and civil engineering students a comprehensive reference on the planning and design of
a variety of engineered structures. It also gives the designer the information likely needed for
all design phases.

The handbook covers various types of structures, such as tall buildings, industrial buildings,
bridges including railroad bridges, thin-shell structures, arches, cable-supported roofs, steel
tanks for liquids, retaining structures, blast-resistant structures, bins and silos for granular
material, steel transmission towers and poles, and chimneys. Structural loads for the various
types of structures are also covered, and there is comprehensive coverage of classical structural
analysis methods, finite-element analysis, and computer applications in structural engineering.
Additionally, earthquake-resistant design has been covered based on the most recent codes
and standards. Design of reinforced concrete, prestressed concrete, structural steel, cold-formed
steel, masonry, wood, and aluminium are covered. A chapter on soil mechanics, soil exploration,
and foundation design is also provided. Design against fatigue and fracture is covered for concrete,
composites, and steel.

In this fifth edition, all chapters have been rewritten, some chapters in previous versions
of the handbook have been removed due to recent developments in design or construction
practices, and 12 new chapters have been added. The new chapters cover structural loads,
fracture mechanics of concrete and composites, railroad bridges, health monitoring of struc-
tures, building information modeling (BIM), structural fire engineering, progressive collapse
and blast-resistant design, strengthening of concrete using fiber-reinforced polymer (FRP),
structural glass, design of foundations for machines, value engineering, and stone cladding.

The 33 chapters of the handbook have been written by 66 contributors. They have pre-
sented their material in a ready-to-use form with flowcharts to show step-by-step procedures
wherever possible. Therefore, derivations of formulas are omitted in all but a few instances,
and many worked-out examples are given. Background information, descriptive matter, and
explanatory material have been condensed or omitted. Because each chapter treats a subject
that is broad enough to fill a book by itself, the contributors have had to select the material that,
in their judgment, is likely to be the most useful to the greatest number of users. References
and sources of additional material are noted for most of the topics that could not be treated
in sufficient detail.

I am very grateful to the contributors for their tremendous efforts in writing, reviewing,
and editing their work, and for their patience during the time it has taken to complete the
fifth edition.

Mustafa Mahamid, Ph.D., S.E., PE., PEng.
University of Illinois at Chicago
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BY

MUSTAFA MAHAMID, Ph.D., SE, PE, P.Eng. University of Illinois at Chicago

DAVID A. FANELLA, Ph.D., SE, PE  Concrete Reinforcing Steel Institute

1.1 INTRODUCTION

Applicable nominal loads on a structure are determined from the
general building code under which the project is to be designed and
constructed. Chapter 16 of the IBC (Ref. 1) contains the minimum mag-
nitudes of some nominal loads and references ASCE/SEI 7 (Ref. 2) for
others. For a specific project, the governing local building code should
be consulted for any variances from the IBC or ASCE/SEI 7.

It is common for nominal loads to be referred to as service loads.
These loads are multiplied by load factors in the strength design
method. Exceptions are the wind load effect W and the earthquake load
effect E: Both are defined to be strength-level loads where the load fac-
tor is equal to 1.0.

Table 1.1 contains a list of loads from the IBC and ASCE/SEI 7.
Comprehensive information on the determination of structural loads
can be found in Ref. 3.

1.2 DEAD LOADS

Nominal dead loads D are the actual weights of construction materials
and fixed service equipment that are attached to or supported by the
building or structure. Specific examples of such loads are listed under
the definition of “dead load” in IBC 202.

Dead loads are considered to be permanent loads because their mag-
nitude remains essentially constant over time.

Superimposed dead loads are permanent loads other than the weights
of the structural members and include the following: floor finishes
and/or topping; walls; ceilings; heating, ventilating, and air-conditioning
(HVAC) and other service equipment; fixed partitions; and cladding.

Minimum design dead loads for various types of common con-
struction components are provided in ASCE/SEI Table C3.1-1a, and
minimum densities for common construction materials are given in
ASCE/SEI Table C3.1-2. In cases where information on dead load is
unavailable, values of dead loads used in design must be approved by
the building official (IBC 1606.2).

1.3 LIVE LOADS
1.3.1 General

Live loads are transient in nature and vary in magnitude over the life
of a structure. These loads are produced by the use and occupancy of

Chapter 1
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a building or structure and do not include construction loads, environ-
mental loads (such as wind loads, snow loads, rain loads, earthquake
loads, and flood loads), or dead loads (IBC 202).

IBC Table 1607.1 contains nominal design values of uniformly dis-
tributed and concentrated live loads L, as a function of occupancy or
use. The occupancy description listed in the table is not necessarily
group-specific (occupancy groups are defined in IBC Chapter 3). For
example, an office building with a Business Group B classification may

Table 1.1 Summary of Loads Addressed in the IBC and ASCE/SEI 7
Notation Load Code section
D Dead load IBC 1606
D; Weight of ice Chap. 10 of ASCE/SET 7
E Combined effect of horizontal and IBC 1613 and
vertical earthquake-induced forces ASCE/SET 12.4.2
as defined in ASCE/SEI 12.4.2
E, Maximum seismic load effect of IBC 1613 and
horizontal and vertical forces as ASCE/SEI 12.4.3
set forth in ASCE/SEI 12.4.3
F Load due to fluids with well-defined =~ -------
pressures and maximum heights
F, Flood load IBC 1612
H Load due to lateral earth pressures, IBC 1610 (soil lateral loads)
ground water pressure, or pressure
of bulk materials
L Live load, except roof live load, IBC 1607
including any permitted live
load reduction
L, Roof live load including any IBC 1607
permitted live load reduction
R Rain load IBC 1611
N Snow load IBC 1608 and Chapter 7
of ASCE/SEI 7
T Cumulative effects of self-straining See ASCE/SEI 2.3.4 and
forces and effects 2.4.4
w Load due to wind pressure IBC 1609 and Chapters 26
to 31 of ASCE/SEIL 7
w; Wind-on-ice load IBC 1614 and Chapter 10

of ASCE/SEL 7
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also have storage areas that may warrant live loads of 125 or 250 psf (6.0 or
12.0 kN/m?) depending on the type of storage, which are greater than
the prescribed office live loads. Structural members are designed on the
basis of the maximum effects due to application of either a uniform load
or a concentrated load and need not be designed for the effects of both
loads applied at the same time. The building official must approve live
loads that are not specifically listed in the table.

Partitions that can be relocated (i.e., those types that are not perma-
nently attached to the structure) are considered to be live loads in office
and other buildings. A live load equal to at least 15 psf (0.72 kN/m?)
must be included for movable partitions if the nominal uniform floor
live load is less than 80 psf (3.8 kN/m?).

IBC Table 1607.1 prescribes a minimum roof live load of 20 psf
(0.96 kN/m?) for typical roof structures; larger live loads are required
for roofs used as gardens or places of assembly.

ASCE Table 4.3-1 also contains minimum uniform and concentrated
live loads, and some of these values differ from those in IBC Table
1607.1. ASCE Tables C4.3-1 and C4.3-2 can be used as a guide in estab-
lishing live loads for some commonly encountered occupancies.

1.3.2 Reduction in Live Loads

Because live loads are transient in nature, the probability that a struc-
tural member will be subjected to the full effects from nominal live
loads decreases as the area supported by the member increases. Except
for uniform live loads on roofs, the minimum uniformly distributed live
loads L, in IBC Table 1607.1 are permitted to be reduced in accordance
with the methods in IBC 1607.11.1 or 1607.11.2. The general method
of live load reduction in IBC 1607.11.1 is also given in ASCE/SEI 4.7.
Reduction of roof live loads must conform to IBC 1607.13.2.

1.3.3 General Method of Live Load Reduction

IBC Equation (16-23) can be used to obtain a reduced live load L for
members that support an area K;; Ay > 400 {t? (37.2 m?):

15
L= L0[0.25+—]
VK Ay
20.50L, for members supporting one floor
>0.40L, for members supporting two or more floors

1.0

In SI Units

onfoass 2|
Ky Ay

In this equation, K;; is the live load element factor given in IBC
Table 1607.11.1, and Ay is the tributary area supported by the member
in square feet (square meters).

The live load element factor K;; converts the tributary area A; into
an influence area, which is considered to be the adjacent floor area from
which the member derives its load. In other words,

K;; = influence area/tributary area

Figure 1.1 illustrates how the reduction multiplier 0.25+15/(\/K;; Ar)
varies with respect to the influence area K;;A;. Included in the figure
are the minimum influence area of 400 square feet and the limits of 0.5
and 0.4, which are the maximum permitted reductions for members
supporting one floor and two or more floors, respectively.

ONE-WAY SLABS

Live load reduction on one-way slabs is permitted provided that the
tributary area, Ay, does not exceed an area equal to the slab span times a
width normal to the span of 1.5 times the slab span (i.e., an area with an
aspect ratio of 1.5). The live load will be somewhat higher for a one-way
slab with an aspect ratio of 1.5 than for a two-way slab with the same
aspect ratio. This recognizes the benefits of higher redundancy that
results from two-way action.

ASCE/SEI 4.7.6 has the same requirements for live load reduction on
one-way slabs as that in IBC 1607.11.1.1.

HEeavy Live LoaDs

According to IBC 1607.11.1.2, live loads that are greater than 100 psf
must not be reduced except for the following:

1. Live loads for members supporting two or more floors are permit-
ted to be reduced by a maximum of 20 percent, but L must not be less
than that calculated by IBC 1607.11.1.

2. In occupancies other than storage, additional live load reduction
is permitted if it can be shown by a registered design professional that
such a reduction is warranted.
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Figure 1.1 Reduction multiplier for live load in accordance with IBC 1607.11.1.



In buildings that support relatively large live loads, such as storage
buildings, several adjacent bays may be fully loaded; as such, live loads
should not be reduced in those situations. Data in actual buildings
indicate that the floor in any story is seldom loaded with more than
80 percent of the nominal live load. Thus, a maximum live load reduc-
tion of 20 percent is permitted for members that support two or more
floors, such as columns and walls.

PASSENGER VEHICLE GARAGES

The live load in passenger vehicle garages is not permitted to be reduced,
except for members supporting two or more floors; in such cases, the
maximum reduction is 20 percent, but L must not be less than that
calculated by IBC 1607.11.1 (IBC 1607.11.1.3). Thus, live load reduction
is not permitted except for members that support two or more floors.

STRUCTURAL LOADS 3

GRrouP A (AsSEMBLY) OCCUPANCIES

Due to the nature of assembly occupancies, there is a high probability
that the entire floor is subjected to full uniform live load. According to
Footnote m in IBC Table 1607.1, live load reduction is not permitted in
assembly areas, except for follow spot, projection, and control rooms,
unless specific exceptions of IBC 1607.11 apply.

Flowchart 1 shown in Fig. 1.2 can be used to determine basic uniform
live load reduction in accordance with IBC 1607.11.1.

1.3.4 Alternative Uniform Live Load Reduction

An alternative method of uniform live load reduction, which is based on
provisions in the 1997 Uniform Building Code (Ref. 4), is given in IBC
1607.11.2. IBC Equation 16-24 can be used to obtain a reduction factor

FLOWCHART 1

Basic Uniform Live Load Reduction (IBC 1607.11.1)

No

slab?

Is the member a one-way

Yes

@e load reduction is not permitt@

Yes
A7 < 1.5(slab span)?
I

No Is the structure a passenger Yes
vehicle garage?
A
@e load reduction is not permitte@
No Is the structure classified as a Yes

Group A occupancy?

N

@e load reduction is not permitt@

* See IBC 1607.11.1.2 for two exceptions to this requirement.

** Live loads for members supporting two or more floors are permitted to be
reduced by a maximum of 20 percent (IBC 1607.11.1.3).

' Live loads for members supporting follow spot, projections, and control
rooms are permitted to be reduced (see Footnote m in IBC Table 1607.1).

Figure 1.2 Basic uniform live load reduction in accordance with IBC 1607.11.1 (Flowchart 1).
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FLOWCHART 1

Basic Uniform Live Load Reduction (IBC 1607.11.1)

(continued)

Is the member a roof
member?

No Is K, Ay < 400 sq ft?

A

A 4

Live load reduction is not permitted
except as specified in IBC 1607.13.2

@e load reduction is not permitteD

L= L,,[O.ZS +

15
N KAy J

> 0.50L,, for members supporting one floor
> 0.40L,, for members supporting two or more floors

Figure 1.2 (Continued)

R for members that support an area greater than or equal to 150 square
feet where the live load is less than or equal to 100 psf.

Flowchart 2 shown in Fig. 1.3 can be used to determine alternative
uniform live load reduction in accordance with IBC 1607.11.2.

1.3.5 Roof Loads

In general, roofs are to be designed to resist dead, live, wind, and, where
applicable, rain, snow, and earthquake loads. A minimum roof live load
of 20 psf is prescribed in IBC Table 1607.1 for typical roof structures,
while larger live loads are required for roofs used as gardens or places
of assembly.

IBC 1607.13.2 permits nominal roof live loads on flat, pitched, and
curved roofs and awnings and canopies other than fabric construction
supported by a skeleton frame to be reduced in accordance with IBC
Equation 16-26:

L =LRR,; 12<L,<20

where L, = unreduced roof live load per square foot of horizontal roof
projection supported by the member
L, = reduced roof live load per square foot of horizontal roof

projection supported by the member

1 for A, <200 square feet
R, ={12-0.00014, for 200 square feet < A, <600 square feet
0.6 for A, 2600 square feet
1 for F<4
R,={12-005F for 4<F<I12
0.6 for F>12

A, = tributary area (span length multiplied by effective width) in
square feet supported by a member
F = the number of inches of rise per foot for a sloped roof
= the rise-to-span ratio multiplied by 32 for an arch
or dome

No live load reduction is permitted for members supporting less than
or equal to 200 square feet as well as for roof slopes less than or equal
to 4:12. In no case is the reduced roof live load to be taken less than
12 psf. The minimum load determined by this equation accounts for
occasional loading due to the presence of workers and materials during
repair operations.
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FLOWCHART 2

Alternative Uniform Live Load Reduction (IBC 1607.11.2)

slab?

Is the member a one-way

@e load reduction is not permitt@

A < 0.5(slab span)?
|

No

vehicle garage?

Group A occupancy?

Is the structure a passenger

Is the structure classified as a

A 4

@e load reduction is not permitte@

@e load reduction is not permitt@

-A
* Live loads for members supporting two or more floors are permitted to be reduced
by a maximum of 20 percent [IBC 1607.11.2(1); also see exception in that section].

** Live loads for members supporting two or more floors are permitted to be reduced by
a maximum of 20 percent [IBC 1607.11.2(2)].

T Live loads for members supporting follow spot, projections, and control rooms are
permitted to be reduced (see Footnote m in IBC Table 1607.1).

Figure 1.3  Alternative uniform live load reduction in accordance with IBC 1607.11.2 (Flowchart 2).

Live loads are permitted to be reduced on areas of occupiable roofs
using the provisions of IBC 1607.11 for floor live loads (IBC 1607.13.3).
Live loads that are greater than or equal to 100 psf at areas of roofs
that are classified as Group A (assembly) occupancies are not permit-
ted to be reduced unless specific exceptions of IBC 1607.11 apply (see
Footnote m in IBC Table 1607.1).

A minimum roof live load of 20 psf is required in unoccupied land-
scaped areas on roofs (IBC 1607.13.3.1). The weight of landscaping
material is considered a dead load and must be determined based on
the saturation level of the soil.

A minimum roof live load of 5 psf is required for awnings and
canopies in accordance with IBC Table 1607.1 (IBC 1607.13.4). Such

elements must also be designed for the combined effects of snow and
wind loads in accordance with IBC 1608 and 1609.

1.3.6 Crane Loads

Design provisions for runway beams that support moving bridge cranes
and monorail cranes are given in IBC 1607.14. In general, the sup-
port structure of the crane must be designed for the maximum wheel
load, vertical impact, and horizontal impact as a simultaneous load
combination.

A typical top-running bridge crane is depicted in Fig. 1.4. The trol-
ley and hoist move along the crane bridge, which is supported by the
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FLOWCHART 2

Alternative Uniform Live Load Reduction (IBC 1607.11.2)
(continued)

Is A <150 sq ft?

v

@e load reduction is not permitteD

L=L,[1 - (R/100)]
R =0.08(A — 150)

40 percent for horizontal members
< smallest of { 60 percent for vertical members
23.1(1 + D/IL,)

Figure 1.3  (Continued)

is maximum; generally, this occurs when the trolley is moved as close to
the supporting members as possible.

The maximum wheel loads must be increased by the percentages
given in IBC 1607.14.2 to account for the vertical impact force that is
caused by the starting and stopping movement of the suspended weight
from the crane and by the movement of the crane along the rails.

A lateral force that acts perpendicular to the crane runway beams is
generated by the transverse movement of the crane, that is, by move-

: ment that occurs perpendicular to the runway beam (see Fig. 1.5).
Trolley with Hoist According to IBC 1607.14.3, the magnitude of this load on crane

Vertical

\— Bridge Runway
Beam (typ.)

Support
Column (typ.)

Figure 1.4 Top-running bridge crane.

runway beams and support columns. The entire crane assemblage can
also move along the length of the runway beams.

The maximum wheel loads that are to be used in the design of the
supporting members are due to the weight of the bridge plus the sum
of the rated capacity and the weight of the trolley. The trolley is to be
positioned on its runway at the location where the resulting load effect Figure 1.5 Crane loads on a runway beam.

Runway Beam




